Full Text

Turn on search term navigation

© Gross et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The viral E3 ubiquitin ligase ICP0 protein has the unique property to temporarily localize at interphase and mitotic centromeres early after infection of cells by the herpes simplex virus type 1 (HSV-1). As a consequence ICP0 induces the proteasomal degradation of several centromeric proteins (CENPs), namely CENP-A, the centromeric histone H3 variant, CENP-B and CENP-C. Following ICP0-induced centromere modification cells trigger a specific response to centromeres called interphase Centromere Damage Response (iCDR). The biological significance of the iCDR is unknown; so is the degree of centromere structural damage induced by ICP0. Interphase centromeres are complex structures made of proximal and distal protein layers closely associated to CENP-A-containing centromeric chromatin. Using several cell lines constitutively expressing GFP-tagged CENPs, we investigated the extent of the centromere destabilization induced by ICP0. We show that ICP0 provokes the disappearance from centromeres, and the proteasomal degradation of several CENPs from the NAC (CENP-A nucleosome associated) and CAD (CENP-A Distal) complexes. We then investigated the nucleosomal occupancy of the centromeric chromatin in ICP0-expressing cells by micrococcal nuclease (MNase) digestion analysis. ICP0 expression either following infection or in cell lines constitutively expressing ICP0 provokes significant modifications of the centromeric chromatin structure resulting in higher MNase accessibility. Finally, using human artificial chromosomes (HACs), we established that ICP0-induced iCDR could also target exogenous centromeres. These results demonstrate that, in addition to the protein complexes, ICP0 also destabilizes the centromeric chromatin resulting in the complete breakdown of the centromere architecture, which consequently induces iCDR.

Details

Title
Centromere Architecture Breakdown Induced by the Viral E3 Ubiquitin Ligase ICP0 Protein of Herpes Simplex Virus Type 1
Author
Gross, Sylvain; Catez, Frédéric; Masumoto, Hiroshi; Lomonte, Patrick
First page
e44227
Section
Research Article
Publication year
2012
Publication date
Sep 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1344597700
Copyright
© Gross et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.