Full text

Turn on search term navigation

© Hur et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Passive and label-free isolation of viable target cells based on intrinsic biophysical cellular properties would allow for cost savings in applications where molecular biomarkers are known as well as potentially enable the separation of cells with little-to-no known molecular biomarkers. We have demonstrated the purification of adrenal cortical progenitor cells from digestions of murine adrenal glands utilizing hydrodynamic inertial lift forces that single cells and multicellular clusters differentially experience as they flow through a microchannel. Fluorescence staining, along with gene expression measurements, confirmed that populations of cells collected in different outlets were distinct from one another. Furthermore, primary murine cells processed through the device remained highly viable and could be cultured for 10 days in vitro. The proposed target cell isolation technique can provide a practical means to collect significant quantities of viable intact cells required to translate stem cell biology to regenerative medicine in a simple label-free manner.

Details

Title
Label-Free Enrichment of Adrenal Cortical Progenitor Cells Using Inertial Microfluidics
Author
Hur, Soojung Claire; Brinckerhoff, Tatiana Z; Walthers, Christopher M; Dunn, James C Y; Dino Di Carlo
First page
e46550
Section
Research Article
Publication year
2012
Publication date
Oct 2012
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1345197394
Copyright
© Hur et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.