It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 11
Abstract: Endothelialization of therapeutic cardiovascular implants is essential for their intravascular hemocompatibility. We previously described a novel nanowell-RGD-nanoparticle ensemble, which when applied to surfaces led to enhanced endothelialization and retention under static conditions and low flow rates. In the present study we extend our work to determine the interrelated effects of flow rate and the orientation of ensemble-decorated surface arrays on the growth, adhesion and morphology of endothelial cells. Human umbilical vascular endothelial cells (HUVECs) were grown on array surfaces with either 1 μm × 5 μm spacing ("parallel to flow") and 5 μm × 1 μm spacing ("perpendicular to flow") and were exposed to a range of shear stress of (0 to 4.7 ± 0.2 dyn·cm-2 ), utilizing a pulsatile flow chamber. Under physiological flow (4.7 ± 0.2 dyn·cm-2 ), RGD-nanoparticle-nanowell array patterning significantly enhanced cell adhesion and spreading compared with control surfaces and with static conditions. Furthermore, improved adhesion coincided with higher alignment to surface patterning, intimating the importance of interaction and response to the array surface as a means of resisting flow detachment. Under sub-physiological condition (1.7 ± 0.3 dyn·cm-2 ; corresponding to early angiogenesis), nanowell-nanoparticle patterning did not provide enhanced cell growth and adhesion compared with control surfaces. However, it revealed increased alignment along the direction of flow, rather than the direction of the pattern, thus potentially indicating a threshold for cell guidance and related retention. These results could provide a cue for controlling cell growth and alignment under varying physiological conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer