Full Text

Turn on search term navigation

Copyright Nature Publishing Group Apr 2013

Abstract

With the development of ultrafast electron and X-ray sources it is becoming possible to study structural dynamics with atomic-level spatial and temporal resolution. Because of their short mean free path, electrons are particularly well suited for investigating surfaces and thin films, such as the challenging and important class of membrane proteins. To perform single-shot diffraction experiments on protein crystals, an ultracold electron source was proposed, based on near-threshold photoionization of laser-cooled atoms, which is capable of producing electron pulses of both high intensity and high coherence. Here we show that high coherence electron pulses can be produced by femtosecond photoionization, opening up a new regime of ultrafast structural dynamics experiments. The transverse coherence turns out to be much better than expected on the basis of the large bandwidth of the femtosecond ionization laser pulses. This surprising result can be explained by analysis of classical electron trajectories.

Details

Title
High-coherence electron bunches produced by femtosecond photoionization
Author
Engelen, W J; Van Der Heijden, M A; Bakker, D J; Vredenbregt, E J D; Luiten, O J
Pages
1693
Publication year
2013
Publication date
Apr 2013
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1349799214
Copyright
Copyright Nature Publishing Group Apr 2013