Full Text

Turn on search term navigation

© 2013 Merz, Lie. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In mammals, adult neural stem cells give rise to new hippocampal dentate granule neurons and interneurons of the olfactory bulb throughout life. The microtubule associated protein Doublecortin (DCX) is expressed by migrating neuroblasts and immature neurons, and is widely used as a stage-specific marker of adult neurogenesis and as a marker to identify neurogenic activity in the adult brain per se. Mutations in the DCX gene have been causally linked to human lissencephalic syndromes. Moreover, embryonic loss of DCX function interferes with neuronal migration and dendritic patterning in a species- and region-specific manner. A putative function of DCX in adult neurogenesis has not been directly explored. Here we show that overexpression of DCX in newly generated dentate granule neurons of the adult mouse brain has no effect on morphological maturation or migration. We also show that micro (mi) RNA-mediated retroviral knockdown of DCX does not alter morphological maturation of adult born dentate granule cells or migration of new neurons in either adult neurogenic niche. Thus, the present data indicate that DCX is dispensable for the development of new neurons in adult mice.

Details

Title
Evidence that Doublecortin Is Dispensable for the Development of Adult Born Neurons in Mice
Author
Merz, Katharina; Lie, D Chichung
First page
e62693
Section
Research Article
Publication year
2013
Publication date
May 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1350914741
Copyright
© 2013 Merz, Lie. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.