Full text

Turn on search term navigation

© 2013 Soares et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The mTOR pathway is aberrantly stimulated in many cancer cells, including pancreatic ductal adenocarcinoma (PDAC), and thus it is a potential target for therapy. However, the mTORC1/S6K axis also mediates negative feedback loops that attenuate signaling via insulin/IGF receptor and other tyrosine kinase receptors. Suppression of these feed-back loops unleashes over-activation of upstream pathways that potentially counterbalance the antiproliferative effects of mTOR inhibitors. Here, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic cancer cells with either rapamycin or active-site mTOR inhibitors suppressed S6K and S6 phosphorylation induced by insulin and the GPCR agonist neurotensin. Rapamycin caused a striking increase in Akt phosphorylation at Ser473 while the active-site inhibitors of mTOR (KU63794 and PP242) completely abrogated Akt phosphorylation at this site. Conversely, active-site inhibitors of mTOR cause a marked increase in ERK activation whereas rapamycin did not have any stimulatory effect on ERK activation. The results imply that first and second generation of mTOR inhibitors promote over-activation of different pro-oncogenic pathways in PDAC cells, suggesting that suppression of feed-back loops should be a major consideration in the use of these inhibitors for PDAC therapy. In contrast, metformin abolished mTORC1 activation without over-stimulating Akt phosphorylation on Ser473 and prevented mitogen-stimulated ERK activation in PDAC cells. Metformin induced a more pronounced inhibition of proliferation than either KU63794 or rapamycin while, the active-site mTOR inhibitor was more effective than rapamycin. Thus, the effects of metformin on Akt and ERK activation are strikingly different from allosteric or active-site mTOR inhibitors in PDAC cells, though all these agents potently inhibited the mTORC1/S6K axis.

Details

Title
Different Patterns of Akt and ERK Feedback Activation in Response to Rapamycin, Active-Site mTOR Inhibitors and Metformin in Pancreatic Cancer Cells
Author
Soares, Heloisa P; Ni, Yang; Kisfalvi, Krisztina; Sinnett-Smith, James; Rozengurt, Enrique
First page
e57289
Section
Research Article
Publication year
2013
Publication date
Feb 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1351358986
Copyright
© 2013 Soares et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.