Full Text

Turn on search term navigation

© 2013 Mahendram et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

β-catenin, an adherens junction component and key Wnt pathway effector, regulates numerous developmental processes and supports embryonic stem cell (ESC) pluripotency in specific contexts. The β-catenin homologue γ-catenin (also known as Plakoglobin) is a constituent of desmosomes and adherens junctions and may participate in Wnt signaling in certain situations. Here, we use β-catenin(+/+) and β-catenin(−/−) mouse embryonic stem cells (mESCs) to investigate the role of γ-catenin in Wnt signaling and mESC differentiation. Although γ-catenin protein is markedly stabilized upon inhibition or ablation of GSK-3 in wild-type (WT) mESCs, efficient silencing of its expression in these cells does not affect β-catenin/TCF target gene activation after Wnt pathway stimulation. Nonetheless, knocking down γ-catenin expression in WT mESCs appears to promote their exit from pluripotency in short-term differentiation assays. In β-catenin(−/−) mESCs, GSK-3 inhibition does not detectably alter cytosolic γ-catenin levels and does not activate TCF target genes. Intriguingly, β-catenin/TCF target genes are induced in β-catenin(−/−) mESCs overexpressing stabilized γ-catenin and the ability of these genes to be activated upon GSK-3 inhibition is partially restored when wild-type γ-catenin is overexpressed in these cells. This suggests that a critical threshold level of total catenin expression must be attained before there is sufficient signaling-competent γ-catenin available to respond to GSK-3 inhibition and to regulate target genes as a consequence. WT mESCs stably overexpressing γ-catenin exhibit robust Wnt pathway activation and display a block in tri-lineage differentiation that largely mimics that observed upon overexpression of β-catenin. However, β-catenin overexpression appears to be more effective than γ-catenin overexpression in sustaining the retention of markers of naïve pluripotency in cells that have been subjected to differentiation-inducing conditions. Collectively, our study reveals a function for γ-catenin in the regulation of mESC differentiation and has implications for human cancers in which γ-catenin is mutated and/or aberrantly expressed.

Details

Title
Ectopic γ-catenin Expression Partially Mimics the Effects of Stabilized β-catenin on Embryonic Stem Cell Differentiation
Author
Mahendram, Sujeivan; Kelly, Kevin F; Paez-Parent, Sabrina; Sharmeen Mahmood; Polena, Enio; Cooney, Austin J; Doble, Bradley W
First page
e65320
Section
Research Article
Publication year
2013
Publication date
May 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1355696715
Copyright
© 2013 Mahendram et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.