Full Text

Turn on search term navigation

Copyright Nature Publishing Group May 2013

Abstract

The observation of a high-mobility two-dimensional electron gas between two insulating complex oxides, especially LaAlO3 /SrTiO3 , has enhanced the potential of oxides for electronics. The occurrence of this conductivity is believed to be driven by polarization discontinuity, leading to an electronic reconstruction. In this scenario, the crystal orientation has an important role and no conductivity would be expected, for example, for the interface between LaAlO3 and (110)-oriented SrTiO3 , which should not have a polarization discontinuity. Here we report the observation of unexpected conductivity at the LaAlO3 /SrTiO3 interface prepared on (110)-oriented SrTiO3 , with a LaAlO3 -layer thickness-dependent metal-insulator transition. Density functional theory calculation reveals that electronic reconstruction, and thus conductivity, is still possible at this (110) interface by considering the energetically favourable (110) interface structure, that is, buckled TiO2 /LaO, in which the polarization discontinuity is still present. The conductivity was further found to be strongly anisotropic along the different crystallographic directions with potential for anisotropic superconductivity and magnetism, leading to possible new physics and applications.

Details

Title
Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface
Author
Annadi, A; Zhang, Q; Renshaw Wang, X; Tuzla, N; Gopinadhan, K; Lü, W M; Roy Barman, A; Liu, Z Q; Srivastava, A; Saha, S; Zhao, Y L; Zeng, S W; Dhar, S; Olsson, E; Gu, B; Yunoki, S; Maekawa, S; Hilgenkamp, H; Venkatesan, T; Ariando
Pages
1838
Publication year
2013
Publication date
May 2013
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1355894844
Copyright
Copyright Nature Publishing Group May 2013