Full text

Turn on search term navigation

© 2013 Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Accumulating studies have demonstrated that 1,25-Dihydroxyvitamin D(3) (1,25(OH)2D3) reduces proteinuria and protects podocytes from injury. Recently, urokinase receptor (uPAR) and its soluble form have been shown to cause podocyte injury and focal segmental glomerulosclerosis (FSGS). Here, our findings showed that 1,25(OH)2D3 did inhibit podocyte uPAR expression and attenuate proteinuria and podocyte injury.

Methodology/Principal Findings

In this study, the antiproteinuric effect of 1,25(OH)2D3 was examined in the lipopolysaccharide mice model of transient proteinuria (LPS mice) and in the 5/6 nephrectomy rat FSGS model(NTX rats). uPAR protein expression were tested by flow cytometry, immune cytochemistry and western blot analysis, and uPAR mRNA expression by real-time quantitative PCR in cultured podocytes and kidney glomeruli isolated from mice and rats. Podocyte motility was observed by transwell migration assay and wound healing assay. Podocyte foot processes effacement was identified by transmission electron microscopy. We found that 1,25(OH)2D3 inhibited podocyte uPAR mRNA and protein synthesis in LPS-treated podocytes, LPS mice and NTX rats, along with 1,25(OH)2D3 reducing proteinuria in NTX rats and LPS mice.1,25(OH)2D3 reduced glomerulosclerosis in NTX rats and alleviated podocyte foot processes effacement in LPS mice. Transwell migration assay and wound healing assay showed that LPS-induced podocyte motility, irrespective of random or directed motility, were substantially reduced by 1,25(OH)2D3.

Conclusions/Significance

Our results demonstrated that 1,25(OH)2D3 inhibited podocyte uPAR expression in vitro and in vivo, which may be an unanticipated off target effect of 1,25(OH)2D3 and explain its antiproteinuric effect in the 5/6 nephrectomy rat FSGS model and the LPS mouse model of transient proteinuria.

Details

Title
1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria
Author
Ma, Jianchao; Zhang, Bin; Liu, Shuangxin; Xie, Shaoting; Yang, Yun; Ma, Juan; Deng, Yujun; Wang, Wenjian; Xu, Lixia; Li, Ruizhao; Zhang, Li; Yu, Chunping; Shi, Wei
First page
e64912
Section
Research Article
Publication year
2013
Publication date
May 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1357395032
Copyright
© 2013 Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.