Full text

Turn on search term navigation

© 2013 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The mechanisms that control intracellular adhesion are central to the process of invasion and metastasis. Claudin-3 (CLDN3) and claudin-4 (CLDN4) are major structural molecules of the tight junctions that link epithelial cells. Our prior work has demonstrated that knockdown of the expression of either CLDN3 or CLDN4 produces marked changes in the phenotype of ovarian carcinoma cells including increases in growth rate in vivo, migration, invasion, metastasis, and drug resistance, similar to those produced by the epithelial-to-mesenchymal transition (EMT). We postulated that these changes may result from the ability of CLDN3 or CLDN4 to suppress EMT. In this study we found that knockdown of either CLDN3 or CLDN4 increased cell size and resulted in flattened morphology. While knockdown of CLDN3 or CLDN4 did not alter the expression of vimentin, it significantly down-regulated the level of E-cadherin and up-regulated N-cadherin expression. Conversely, over-expression of CLDN3 or CLDN4 in a cell line that does not express endogenous CLDN3 or CLDN4 decreased N-cadherin expression. Re-expression of E-cadherin in the CLDN3 or CLDN4 knockdown cells reduced migration, invasion and tumor growth in vivo. Loss of either CLDN3 or CLDN4 resulted in activation of the PI3K pathway as evidenced by increased Akt phosphorylation, elevated cellular PIP3 content and PI3K activity as well as up-regulation of the mRNA and protein levels of the transcription factor Twist. Taken together, these findings suggest that CLDN3 and CLDN4 function to sustain an epithelial phenotype and that their loss promotes EMT.

Details

Title
Regulation of the Epithelial-Mesenchymal Transition by Claudin-3 and Claudin-4
Author
Lin, Xinjian; Shang, Xiying; Manorek, Gerald; Howell, Stephen B
First page
e67496
Section
Research Article
Publication year
2013
Publication date
Jun 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1370366582
Copyright
© 2013 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.