Abstract

Doc number: 192

Abstract

Background: Human polyomaviruses (HPyV) infections cause mostly unapparent or mild primary infections, followed by lifelong nonpathogenic persistence. HPyV, and specifically JCPyV, are known to co-diverge with their host, implying a slow rate of viral evolution and a large timescale of virus/host co-existence. Recent bio-informatic reports showed a large level of peptide homology between JCPyV and the human proteome. In this study, the antibody response to PyV peptides is evaluated.

Methods: The in-silico analysis of the HPyV proteome was followed by peptide microarray serology. A HPyV-peptide microarray containing 4,284 peptides was designed and covered 10 polyomavirus proteomes. Plasma samples from 49 healthy subjects were tested against these peptides.

Results: In-silico analysis of all possible HPyV 5-mer amino acid sequences were compared to the human proteome, and 1,609 unique motifs are presented. Assuming a linear epitope being as small as a pentapeptide, on average 9.3% of the polyomavirus proteome is unique and could be recognized by the host as non-self. Small t Ag (stAg) contains a significantly higher percentage of unique pentapeptides. Experimental evidence for the presence of antibodies against HPyV 15-mer peptides in healthy subjects resulted in the following observations: i) antibody responses against stAg were significantly elevated, and against viral protein 2 (VP2) significantly reduced; and ii) there was a significant correlation between the increasing number of embedded unique HPyV penta-peptides and the increase in microarray fluorescent signal.

Conclusion: The anti-peptide HPyV-antibodies in healthy subjects are preferably directed against the penta-peptide derived unique fraction of the viral proteome.

Details

Title
An antibody response to human polyomavirus 15-mer peptides is highly abundant in healthy human subjects
Author
Stuyver, Lieven J; Verbeke, Tobias; Van Loy, Tom; Van Gulck, Ellen; Tritsmans, Luc
Pages
192
Publication year
2013
Publication date
2013
Publisher
BioMed Central
ISSN
1743-422X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1372730252
Copyright
© 2013 Stuyver et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.