[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
Various types of artificial neural networks (ANNs) have been successfully applied in hydrological fields, but relatively scant on multistep-ahead flood inundation forecasting, which is very difficult to achieve, especially when dealing with forecasts without regular observed data. This study proposes a recurrent configuration of nonlinear autoregressive with exogenous inputs (NARX) network, called R-NARX, to forecast multistep-ahead inundation depths in an inundation area. The proposed R-NARX is constructed based on the recurrent neural network (RNN), which is commonly used for modeling nonlinear dynamical systems. The models were trained and tested based on a large number of inundation data generated by a well validated two-dimensional simulation model at thirteen inundation-prone sites in Yilan County, Taiwan. We demonstrate that the R-NARX model can effectively inhibit error growth and accumulation when being applied to online multistep-ahead inundation forecasts over a long lasting forecast period. For comparison, a feedforward time-delay and an online feedback configuration of NARX networks (T-NARX and O-NARX) were performed. The results show that (1) T-NARX networks cannot make online forecasts due to unavailable inputs in the constructed networks even though they provide the best performances for reference only; and (2) R-NARX networks consistently outperform O-NARX networks and can be adequately applied to online multistep-ahead forecasts of inundation depths in the study area during typhoon events.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer