It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: S9
Abstract
Background: Multifactor dimensionality reduction (MDR) is a powerful method for analysis of gene-gene interactions and has been successfully applied to many genetic studies of complex diseases. However, the main application of MDR has been limited to binary traits, while traits having ordinal features are commonly observed in many genetic studies (e.g., obesity classification - normal, pre-obese, mild obese and severe obese).
Methods: We propose ordinal MDR (OMDR) to facilitate gene-gene interaction analysis for ordinal traits. As an alternative to balanced accuracy, the use of tau-b, a common ordinal association measure, was suggested to evaluate interactions. Also, we generalized cross-validation consistency (GCVC) to identify multiple best interactions. GCVC can be practically useful for analyzing complex traits, especially in large-scale genetic studies.
Results and conclusions: In simulations, OMDR showed fairly good performance in terms of power, predictability and selection stability and outperformed MDR. For demonstration, we used a real data of body mass index (BMI) and scanned 1~4-way interactions of obesity ordinal and binary traits of BMI via OMDR and MDR, respectively. In real data analysis, more interactions were identified for ordinal trait than binary traits. On average, the commonly identified interactions showed higher predictability for ordinal trait than binary traits. The proposed OMDR and GCVC were implemented in a C/C++ program, executables of which are freely available for Linux, Windows and MacOS upon request for non-commercial research institutions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer