[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
In agricultural ecosystems the use of evapotranspiration (ET) to improve irrigation water management is generally widespread. Commonly, the crop ET (ETc ) is estimated by multiplying the reference crop evapotranspiration (ETo ) by a crop coefficient (Kc ). Accurate estimation of ETo is critical because it is the main factor affecting the calculation of crop water use and water management. The ETo is generally estimated from recorded meteorological variables at reference weather stations. The main objective of this paper was assessing the effect of the uncertainty due to random noise in the sensors used for measurement of meteorological variables on the estimation of ETo , crop ET and net irrigation requirements of grain corn and alfalfa in three irrigation districts of the middle Ebro River basin. Five scenarios were simulated, four of them individually considering each recorded meteorological variable (temperature, relative humidity, solar radiation and wind speed) and a fifth scenario combining together the uncertainty of all sensors. The uncertainty in relative humidity for irrigation districts Riegos del Alto Aragón (RAA) and Bardenas (BAR), and temperature for irrigation district Canal de Aragón y Cataluña (CAC), were the two most important factors affecting the estimation of ETo , corn ET (ETc_corn ), alfalfa ET (ETc_alf ), net corn irrigation water requirements (IRncorn ) and net alfalfa irrigation water requirements (IRnalf ). Nevertheless, this effect was never greater than ±0.5% over annual scale time. The wind speed variable (Scenario 3) was the third variable more influential in the fluctuations (±) of evapotranspiration, followed by solar radiation. Considering the accuracy for all sensors over annual scale time, the variation was about ±1% of ETo , ETc_corn , ETc_alf , IRncorn , and IRnalf . The fluctuations of evapotranspiration were higher at shorter time scale. ETo daily fluctuation remained lower than 5 % during the growing season of corn and alfalfa. This estimation fluctuation in ETo , ETc_corn , ETc_alf , IRncorn , and IRnalf at daily time scale was within an acceptable range, and it can be considered that the sensor accuracy of the meteorological variables is not significant in the estimation of ETo .
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer