Full Text

Turn on search term navigation

© 2013 Pan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Previously, we screened a proteoglycan for anti-hyperglycemic, named FYGL, from Ganoderma Lucidum. For further research of the antidiabetic mechanisms of FYGL in vivo, the glucose homeostasis, activities of insulin-sensitive enzymes, glucose transporter expression and pancreatic function were analyzed using db/db mice as diabetic models in the present work. FYGL not only lead to a reduction in glycated hemoglobin level, but also an increase in insulin and C-peptide level, whereas a decrease in glucagons level and showed a potential for the remediation of pancreatic islets. FYGL also increased the glucokinase activities, and simultaneously lowered the phosphoenol pyruvate carboxykinase activities, accompanied by a reduction in the expression of hepatic glucose transporter protein 2, while the expression of adipose and skeletal glucose transporter protein 4 was increased. Moreover, the antioxidant enzyme activities were also increased by FYGL treatment. Thus, FYGL was an effective antidiabetic agent by enhancing insulin secretion and decreasing hepatic glucose output along with increase of adipose and skeletal muscle glucose disposal in the late stage of diabetes. Furthermore, FYGL is beneficial against oxidative stress, thereby being helpful in preventing the diabetic complications.

Details

Title
Antidiabetic, Antihyperlipidemic and Antioxidant Activities of a Novel Proteoglycan from Ganoderma Lucidum Fruiting Bodies on db/db Mice and the Possible Mechanism
Author
Deng, Pan; Zhang, Dang; Wu, Jiasheng; Chen, Congheng; Xu, Zhixue; Yang, Hongjie; Zhou, Ping
First page
e68332
Section
Research Article
Publication year
2013
Publication date
Jul 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1399533037
Copyright
© 2013 Pan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.