It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 88
Abstract
Background: Case-cohort studies have become common in epidemiological studies of rare disease, with Cox regression models the principal method used in their analysis. However, no appropriate procedures to assess the assumption of proportional hazards of case-cohort Cox models have been proposed.
Methods: We extended the correlation test based on Schoenfeld residuals, an approach used to evaluate the proportionality of hazards in standard Cox models. Specifically, pseudolikelihood functions were used to define "case-cohort Schoenfeld residuals", and then the correlation of these residuals with each of three functions of event time (i.e., the event time itself, rank order, Kaplan-Meier estimates) was determined. The performances of the proposed tests were examined using simulation studies. We then applied these methods to data from a previously published case-cohort investigation of the insulin/IGF-axis and colorectal cancer.
Results: Simulation studies showed that each of the three correlation tests accurately detected non-proportionality. Application of the proposed tests to the example case-cohort investigation dataset showed that the Cox proportional hazards assumption was not satisfied for certain exposure variables in that study, an issue we addressed through use of available, alternative analytical approaches.
Conclusions: The proposed correlation tests provide a simple and accurate approach for testing the proportional hazards assumption of Cox models in case-cohort analysis. Evaluation of the proportional hazards assumption is essential since its violation raises questions regarding the validity of Cox model results which, if unrecognized, could result in the publication of erroneous scientific findings.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer