(ProQuest: ... denotes non-US-ASCII text omitted.)
D. F. Shao 1 and W. J. Lu 1 and S. Lin 1 and P. Tong 1 and Y. P. Sun 1, 2
Recommended by Laifeng Li
1, Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
2, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
Received 29 October 2012; Accepted 24 December 2012
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Recently, antiperovskite compounds AXM3 (A, main group elements; X, carbon, boron, or nitrogen; M, transition metal) have attracted considerable attention. Due to the high concentration of transition metals in a cell, it can be deduced that interesting properties will be found in the family of compounds. In the antiperovskites family, nickel-based and manganese-based antiperovskites were extensively studied. Abundant physical properties were shown in the two kinds of compounds, such as superconductivity [ 1- 3], giant magnetoresistance (MR) [ 4, 5], large negative magnetocaloric effect (MCE) [ 6, 7], giant negative thermal expansion [ 8, 9], magnetostriction [ 10], and nearly zero temperature coefficient of resistivity [ 11, 12]. But there are only a few reports about other 3d-metal-based antiperovskites so far. The difficulty restricting researchers is the exploration of new materials that can be experimentally synthesized. Therefore, theoretical investigations on these potential 3d-metal-based antiperovskites are useful to find the easily prepared stable materials and explore the new physical properties.
In the earlier years, researchers have found that in chromium compounds there are varieties of interesting physical properties. Many of chromium alloys such as Cr-Ru, Cr-Rh, and Cr-Ir alloys show superconductivity [ 13]. And it was found there is spin density wave antiferromagnetism that coexists with superconductivity in Cr 1 -x Re x (x >0.17 ) [ 14], Cr 1 -x Ru x (x >0.17 ) [ 15], and ( Cr 1 -x Mo x ) 75 Ru 75 ( x =0 , 0.03, 0.06, and 0.10) [ 16]. For chromium-based antiperovskites, Wiendlocha et al. [ 17] discussed the possibility of superconductivity in GaNCr3 and RhNCr3 , and recent phonon and electron-phonon coupling calculation of RhNCr3 [ 18] supports Wiendlocha et al.'s prediction. In the present work, we theoretically investigated antiperovskite chromium-based carbides ACCr3 through the first-principles calculation based on density functional theory (DFT). The optimized lattice parameter of ACCr3 is basically proportional to the radius of A-site elements. From the analysis of formation energies, we predict that only AlCCr3 and GaCCr3 can be synthesized at ambient pressure, and they are stable with nonmagnetic ground states. The elastic and electronic properties of the two compounds are specifically discussed. AlCCr3 and GaCCr3 show ductile natures and may have similar thermal properties. The electron and hole bands cross the Fermi level, implying the multiple-band nature of AlCCr3 and GaCCr3 . The Fermi level locates at the vicinity of the density of states (DOS) peak, which leads to a large DOS at Fermi level dominated by Cr-3d electrons. The bands properties of AlCCr3 and GaCCr3 are very similar to those of superconducting antiperovskite MgCNi3 . The similarity may make AlCCr3 and GaCCr3 show superconductivity.
2. Computational Details
The calculations were performed by projected augmented-wave (PAW) [ 19, 20] method using the ABINIT code [ 21- 23]. The PAW method can lead to very accurate results comparable to other all-electron methods. For the exchange-correlation functional, the generalized gradient approximation (GGA) according to the Perdew-Burke-Ernzerhof [ 24] parametrization was used. Electronic wavefunctions are expanded with plane waves up to an energy cutoff of 1200 eV. Brillouin zone sampling is performed on the Monkhorst-Pack (MP) mesh [ 25] of 16 ×16 ×16 . The self-consistent calculations were considered to be converged when the total energy of the system was stable within 10 -6 Ha. Nonmagnetic, ferromagnetic (FM), and antiferromagnetic (AFM) states were tested in the study. For AFM states, we only considered the simplest case: the spins of Cr atom in [111] layers are parallel with each other in the same layer and are antiparallel with spins in the neighboring layers.
The elastic constants are evaluated according to the finite-strain continuum elasticity theory [ 26, 27]. The strain energy per unit mass can be expressed as a polynomial of the strain parameter ξ [ 28]: [figure omitted; refer to PDF] where the coefficients A 2 and A 3 are combinations of second- and third-order elastic constants of the crystal, respectively. For a cubic structure, there are three independent second-order elastic constants ( C 11 , C 12 , and C 44 ). Therefore, here we introduced 3 Lagrangian strain tensors labeled as η α in terms of ξ . η α and the corresponding coefficients A 2 are listed in Table 1.
Table 1: The coefficient A 2 in ( 1) as combinations for second order elastic constant for cubic crystal. η α denotes the Lagrangian strain tensors in terms of ξ .
Strain type | A 2 |
η 1 = ( ξ ,0,0 ,0,0 ,0 ) | C 11 |
η 2 = ( ξ , ξ ,0,0 ,0,0 ) | 2 C 11 +2 C 12 |
η 3 = ( ξ , ξ , ξ ,0,0 ,0 ) | C 11 +4 C 44 |
Once the single-crystal elastic constants are calculated, the related elastic and mechanic parameters may also be evaluated. Using the Voigt-Reuss-Hill approximation [ 29], bulk modulus B and shear modulus G of cubic crystal can be defined as [figure omitted; refer to PDF] where the subscripts V and R denote the Voigt, and Reuss average, respectively. In ( 3), [figure omitted; refer to PDF] Thus Young's modulus E and Poisson's ratio σ can be obtained using the relations [figure omitted; refer to PDF]
Using the calculated bulk modulus B , shear modulus G , and Young's modulus E , the Debye temperature Θ D can be determined as [figure omitted; refer to PDF] where h , k B , and N A are Planck's, Boltzmann's constants, and Avogadro's number, respectively. ρ is the mass density, M is the molecular weight, and n is the number of atoms in the unit cell. The mean sound velocity is defined as [figure omitted; refer to PDF] where v l and v t are the longitudinal and transverse sound velocities, which can be obtained from bulk modulus B and shear modulus G : [figure omitted; refer to PDF]
3. Results and Discussion
3.1. Ground State and Formation Energy
The structures were fully optimized with respect to lattice parameter and atomic positions. The optimized lattice parameters of ACCr3 for different A-site elements are listed in Table 2. The results show that the lattice parameter of ACCr3 is basically proportional to the radius of A-site elements (see Figure 1).
Table 2: Lattice parameter a , magnetic moments per Cr atom M , and the formation energies ΔE of ACCr3 .
| a | Δ E NM | Δ E FM | M FM | Δ E AFM | M AFM |
| ( Å ) | (eV/atom) | (eV/atom) | ( μ B /Cr) | (eV/atom) | ( μ B /Cr) |
CuCCr3 | 3.869 | 0.214 | 0.212 | 0.396 | 0.205 | 1.006 |
ZnCCr3 | 3.894 | 0.125 | 0.126 | 0.127 | 0.115 | 1.020 |
GaCCr3 | 3.891 | -0.019 | -0.019 | 0.001 | -0.019 | 0.099 |
MoCCr3 | 3.898 | 0.105 | 0.105 | 0.053 | 0.105 | 0.240 |
AlCCr3 | 3.887 | -0.0479 | -0.0478 | 0.034 | -0.0478 | 0.212 |
AgCCr3 | 3.936 | 0.286 | 0.292 | 0.544 | 0.268 | 1.649 |
CdCCr3 | 3.973 | 0.256 | 0.257 | 0.341 | 0.213 | 2.102 |
SnCCr3 | 3.981 | 0.082 | 0.0786 | 0.400 | 0.082 | 0.000 |
MgCCr3 | 3.952 | 0.220 | 0.219 | 0.173 | 0.195 | 1.824 |
InCCr3 | 3.999 | 0.187 | 0.189 | 0.406 | 0.188 | 0.006 |
YCCr3 | 4.088 | 0.269 | 0.268 | 0.611 | 0.270 | 0.000 |
LaCCr3 | 4.122 | 0.496 | 0.362 | 1.8101 | 0.497 | 0.002 |
CaCCr3 | 4.083 | 0.539 | 0.541 | 0.3311 | 0.539 | 0.001 |
SrCCr3 | 4.155 | 0.795 | 0.795 | 0.402 | 0.796 | 0.002 |
BaCCr3 | 4.246 | 1.166 | 0.998 | 1.957 | 1.166 | 0.002 |
Figure 1: Relation between the lattice parameter a and the radius of A-site elements r A .
[figure omitted; refer to PDF]
The common technique for producing antiperovskite carbides is the solid-state synthesis from the parent materials. Therefore we assumed that the antiperovskite chromium-based carbides ACCr3 could be synthesized in the same routine. We analyze the stability of compounds by calculating the formation energies ΔE , which is defined as the difference between the total energies of initial reagents (elements) and final compounds: [figure omitted; refer to PDF] Here, E tot A , E tot C , and E tot Cr are the total energies of the initial reagents.
According to the definition of ΔE , negative values indicate that the formation of compounds from the initial components is energetically favorable and the compounds are stable with respect to a mixture of the initial elements. Conversely, if ΔE >0 , the compounds are unlikely to be synthesized under normal conditions.
The calculated ΔE for the series of A-site elements with different magnetic configurations are listed in Table 2. Except for AlCCr3 and GaCCr3 , all other compounds show positive ΔE . For AlCCr3 and GaCCr3 , the values of ΔE for different magnetic configurations are very close, and the magnetic moments per Cr atom for the FM and AFM states are very small, which implies the nonmagnetic ground states of AlCCr3 and GaCCr3 . From the analysis of formation energies, it seems that ACCr3 can be synthesized only when A = Al and Ga. The elastic and electronic properties of the two compounds will be discussed later.
3.2. Elastic and Mechanical Properties
In order to obtain accurate elastic constants, ξ is varied with a step of 0.0025 in every case for η α . As an example, the strain energies for AlCCr3 and the fitted polynomials are shown in Figure 2. The calculated elastic constants at ambient pressure and other derived mechanical parameters are listed in Table 3. From the calculated values of the elastic constants, one can find that they satisfy the mechanical stability criteria for a cubic crystal, that is, C 11 > C 12 , C 44 >0 , and C 11 +2 C 12 >0 [ 30], which indicates that the compounds are mechanically stable.
Table 3: Elastic constants and derived quantities for ACCr3 (A = Al and Ga).
| C 11 (GPa) | C 12 (GPa) | C 44 (GPa) | A | C p (GPa) | B (GPa) | G (GPa) | B /G | E (GPa) | σ | Θ D (K) |
AlCCr3 | 448.18 | 297.98 | 68.31 | 0.91 | 229.67 | 348.04 | 70.95 | 4.90 | 199.30 | 0.40 | 532.43 |
GaCCr3 | 480.81 | 314.43 | 64.63 | 0.78 | 249.80 | 369.89 | 71.51 | 4.40 | 201.53 | 0.41 | 497.12 |
Figure 2: The strain-energy relation of AlCCr3 .
[figure omitted; refer to PDF]
Cracks in crystals are directly related to the anisotropy of thermal and elastic properties [ 31]. The elastic anisotropy factor A of cubic crystal can be described as [figure omitted; refer to PDF] For a complete isotropic system, the anisotropy factor A takes the value of unity, and the deviation from unity measures the degree of elastic anisotropy [ 32]. The elastic constant C 44 represents the shear resistance in a [100] direction, which is related to the C-Cr bonding. The values of C 44 for the two compounds are almost the same, which implies the similar C-Cr bonding nature of the two compounds. C 11 - C 12 turns out to be the stiffness associated with a shear in a [110] direction, which can be connected with the bonding between A-Cr bonding. Although A-M bonding is usually very weak in antiperovskite ACM3 , it still can influence the anisotropy of the material. The anisotropic factors A are listed in Table 3. The different A-Cr bondings of the two compounds lead to different anisotropy. For AlCCr3 , A =0.91 indicates that AlCCr3 is almost isotropic. However, GaCCr3 seems like more anisotropic ( A =0.78 ).
Young's modulus E defines the ratio between the linear stress and strain. The larger the value of E , the stiffer is the material. In general, as Young's modulus increases, the covalent nature of the compound also increases, which further has an impact on the ductility of the compounds. The values of E for AlCCr3 and GaCCr3 are very close to each other, suggesting the similar covalent nature of the two compounds.
The Cauchy's pressure C p is defined as the difference between the two particular elastic constants C p = C 12 - C 44 . It is considered to serve as an indication of ductility: C p >0 suggests that the material is expected to be ductile; otherwise, the material is expected to be brittle [ 33]. As shown in Table 3, the values of C p for AlCCr3 and GaCCr3 are positive, which is a clear indication for the compounds to be ductile. Another index of ductility is the ratio B /G . According to Pugh [ 34], the ductile/brittle properties of materials could be related empirically to the ratio B /G . If B /G >1.75 , the material would be ductile; otherwise the material behaves in a brittle manner. For ACCr3 (A = Al and Ga), all the calculated B /G ratios are much larger than 1.75, which clearly highlights the ductile nature of ACCr3 (A = Al and Ga). Poisson's ratio generally quantifies the stability of the crystal against shear and takes the value between -1 and 0.5, which are the lower and the upper bounds. The lower bound is where the material does not change its shape, and the upper bound is where the volume remains unchanged. The calculated σ of ACCr3 (A = Al and Ga), listed in Table 3, are very close to the typical σ value of 0.33 for ductile metallic materials [ 35]. All the parameters clearly show the ductility of ACCr3 (A = Al and Ga).
Using bulk modulus B , shear modulus G , and Young's modulus E , the Debye temperature Θ D can be calculated. As a matter of fact, a higher Θ D would imply a higher thermal conductivity associated with the material [ 36]. For the present calculation, the Θ D are estimated to be 532.43 K and 497.12 K for AlCCr3 and GaCCr3 , respectively. The similar values of Θ D suggest the similar thermal characteristics of the two compounds.
3.3. Electronic Properties
The calculated electronic band structures along the high symmetry directions in the Brillouin zones together with the total and site-projected l -decomposed DOS at equilibrium lattice parameters for ACCr3 (A = Al and Ga) are shown in Figures 3and 4. The band structures of the two compounds are very similar. Bands from -13 eV to -10 eV are mainly from the C-2s and Cr-3d states with strong hybridizations characteristic. From -8 eV to 2 eV, there are hybridizations between C-2p and Cr-3d states, and the Cr-3d states contribute dominantly to the bands, which suggests the itinerant nature of Cr-3d electrons. From Figure 4, it can be seen the Fermi level locates at the vicinity of the DOS peak, which leads large DOS at the Fermi level N ( E F ) with values of 4.79 states/eV for AlCCr3 and 5.62 states/eV for GaCCr3 .
The band structures for (a) AlCCr3 and (b) GaCCr3 . The colored lines denote the bands crossing the Fermi level.
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
The density of states of (a) AlCCr3 and (b) GaCCr3 .
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
The Fermi surfaces of the two compounds are similar (see Figure 5). There are four bands that cross the Fermi level. Hole pockets surrounding Γ point come from the lower two bands (denoted with red and green colors in Figure 3). Electron pockets surrounding R point come from the upper two bands (denoted with blue and purple colors in Figure 3). The differences of the Fermi surface of the two compounds come from the band denoted with blue color in Figure 3. It crosses the Fermi level at the vicinity of M point for AlCCr3 , which makes the electron pockets surround the corners of the Brillouin zones connected to each other at M point. However, for GaCCr3 , it crosses the Fermi level in the place between Γ and M points, which forms a cubic cage-like electron pocket surrounding Γ point and connecting with the corner-centered electron pockets. The presence of electron and hole bands crossing the Fermi level indicates the multiple-band natures for AlCCr3 and GaCCr3 .
(a) Brillouin zone of ACCr3 . Fermi surfaces of (b) AlCCr3 and (c) GaCCr3 .
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
(c) [figure omitted; refer to PDF]
In order to understand the bonding nature among the atoms in AlCCr3 and GaCCr3 , we plot the contour maps of the charge density of the two compounds in Figure 6. The C-Cr bonds are very strong, which coincides with the strong hybridization between C-2p and Cr-3d electrons shown in DOS figures. The similarity of the bonding nature for the two compounds coincides with the similar Young's modulus E discussed before.
The contour map of electron charge density of (a) AlCCr3 and (b) GaCCr3 .
(a) [figure omitted; refer to PDF]
(b) [figure omitted; refer to PDF]
The electronic properties of AlCCr3 and GaCCr3 are very similar to those of the superconducting antiperovskite MgCNi3 [ 37], for which the Fermi level locates at the vicinity of the DOS peak as well, and there is multiple-band nature present. The similarity possibly makes AlCCr3 and GaCCr3 potential superconductors. According to McMillan's coupling theory [ 38], the electron-phonon coupling constant λ can be calculated from the following expression λ = ∑ α ( η α / M α Y9; ω α 2 YA; ) , where M α is the atomic mass and Y9; ω α 2 YA; is the averaged phonon frequency and can be approximated as Y9; ω α 2 YA; = Θ D 2 /2 . For superconducting MgCNi3 , there is a peak (a van Hove singularity) in DOS just below Fermi level, which leads to a large N ( E F ) . The N ( E F ) is not large enough to lead magnetic instability, but it can lead to a large electron-phonon coupling constant [ 39]. To the best of our knowledge, except for the superconducting nickel antiperovskites, there are no other antiperovskites that have such a nature. Wiendlocha et al. [ 17] pointed out that in chromium systems, chromium atoms have very large values of the McMillan-Hopfield parameters [ 38], which may lead to a very strong electron-phonon coupling. The recently reported work about RhNCr3 [ 18] supports Wiendlocha et al.'s prediction. The phonon and electron-phonon coupling calculations show that RhNCr3 , which has a large N ( E F ) , is a strong coupling superconductor with Tc above 16 K. Therefore, we consider that there is possibility for superconductivity appearing in AlCCr3 and GaCCr3 . Phonon and electron-phonon coupling calculations will be carried out in the future to confirm the possibility.
4. Conclusion
In conclusion, we theoretically investigated the antiperovskite chromium-based carbides ACCr3 through the first-principles calculation based on density functional theory. The optimized lattice parameter of ACCr3 is basically proportional to the radius of A-site elements. Only AlCCr3 and GaCCr3 have negative formation energies, implying that the two compounds can be synthesized at ambient pressure and are stable with nonmagnetic ground states. AlCCr3 and GaCCr3 show ductile natures, and they may have similar thermal properties. Similar to superconducting antiperovskite MgCNi3 , there are electron and hole bands that cross the Fermi level for AlCCr3 and GaCCr3 , indicating multiple-band natures. The Fermi level locates at the vicinity of the DOS peak, which leads to a large N ( E F ) dominated by Cr-3d electrons. These similarities possibly make AlCCr3 and GaCCr3 show superconductivity, which needs to be further investigated from theoretical and experimental studies.
Acknowledgments
This work was supported by the National Key Basic Research under Contract no. 2011CBA00111 and the National Nature Science Foundation of China under Contract nos. 91222109, 11274311, 51171177, 11174295, U1232139, and 50701042. The calculations were partially performed at the Center for Computational Science, CASHIPS.
[1] T. He, Q. Huang, A. P. Ramirez, Y. Wang, K. A. Regan, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, R. J. Cava, "Superconductivity in the non-oxide perovskite MgCNi3 ," Nature , vol. 411, no. 6833, pp. 54-56, 2001.
[2] M. Uehara, T. Yamazaki, T. Kôri, T. Kashida, Y. Kimishima, I. Hase, "Superconducting properties of CdCNi3 ," Journal of the Physical Society of Japan , vol. 76, no. 3, 2007.
[3] M. Uehara, A. Uehara, K. Kozawa, Y. Kimishima, "New antiperovskite-type superconductor ZnNy Ni3 ," Journal of the Physical Society of Japan , vol. 78, no. 3, 2009.
[4] K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, T. Kanomata, "Giant magnetoresistance in the intermetallic compound Mn3 GaC," Physical Review B , vol. 63, no. 2, 2001.
[5] Y. B. Li, W. F. Li, W. J. Feng, Y. Q. Zhang, Z. D. Zhang, "Magnetic, transport and magnetotransport properties of Mn3+x Sn1-x C and Mn3 Zny Sn1-y C compounds," Physical Review B , vol. 72, no. 2, 2005.
[6] T. Tohei, H. Wada, T. Kanomata, "Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3 GaC," Journal of Applied Physics , vol. 94, no. 3, pp. 1800-1802, 2003.
[7] M. H. Yu, L. H. Lewis, A. R. Moodenbaugh, "Large magnetic entropy change in the metallic antiperovskite Mn3 GaC," Journal of Applied Physics , vol. 93, no. 12, pp. 10128-10130, 2003.
[8] K. Takenaka, H. Takagi, "Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides," Applied Physics Letters , vol. 87, no. 26, pp. 1-3, 2005.
[9] K. Takenaka, K. Asano, M. Misawa, H. Takagi, "Negative thermal expansion in Ge-free antiperovskite manganese nitrides: tin-doping effect," Applied Physics Letters , vol. 92, no. 1, 2008.
[10] K. Asano, K. Koyama, K. Takenaka, "Magnetostriction in Mn3 CuN," Applied Physics Letters , vol. 92, no. 16, 2008.
[11] E. O. Chi, W. S. Kim, N. H. Hur, "Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3 ," Solid State Communications , vol. 120, no. 7-8, pp. 307-310, 2001.
[12] J. C. Lin, B. S. Wang, P. Tong, S. Lin, W. J. Lu, X. B. Zhu, Z. R. Yang, W. H. Song, J. M. Dai, Y. P. Sun, "Tunable temperature coefficient of resistivity in C- and Co-doped CuNMn3 ," Scripta Materialia , vol. 65, no. 5, pp. 452-455, 2011.
[13] B. T. Matthias, T. H. Geballe, V. B. Compton, E. Corenzwit, G. W. Hull, "Superconductivity of chromium alloys," Physical Review , vol. 128, no. 2, pp. 588-590, 1962.
[14] Y. Nishihara, Y. Yamaguchi, T. Kohara, M. Tokumoto, "Itinerant-electron antiferromagnetism and superconductivity in bcc Cr-Re alloys," Physical Review B , vol. 31, no. 9, pp. 5775-5781, 1985.
[15] Y. Nishihara, Y. Yamaguchi, M. Tokumoto, K. Takeda, K. Fukamichi, "Superconductivity and magnetism of bcc Cr-Ru alloys," Physical Review B , vol. 34, no. 5, pp. 3446-3449, 1986.
[16] H. L. Alberts, D. S. McLachlan, T. Germishuyse, M. Naidoo, "Superconductivity and antiferromagnetism in Cr-Mo-Ru alloys," Journal of Physics , vol. 3, no. 12, pp. 1793-1800, 1991.
[17] B. Wiendlocha, J. Tobola, S. Kaprzyk, D. Fruchart, "Electronic structure, superconductivity and magnetism study of Cr3 GaN and Cr3 RhN," Journal of Alloys and Compounds , vol. 442, no. 1-2, pp. 289-291, 2007.
[18] H. M. Tütüncü, G. P. Srivastava, "Phonons and superconductivity in the cubic perovskite Cr3 RhN," Journal of Applied Physics , vol. 112, no. 9, 2012.
[19] P. E. Blöchl, "Projector augmented-wave method," Physical Review B , vol. 50, no. 24, pp. 17953-17979, 1994.
[20] M. Torrent, F. Jollet, F. Bottin, G. Zérah, X. Gonze, "Implementation of the projector augmented-wave method in the ABINIT code: application to the study of iron under pressure," Computational Materials Science , vol. 42, no. 2, pp. 337-351, 2008.
[21] X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J. Y. Raty, D. C. Allan, "First-principles computation of material properties: the ABINIT software project," Computational Materials Science , vol. 25, no. 3, pp. 478-492, 2002.
[22] X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, J. W. Zwanziger, "ABINIT: first-principles approach to material and nanosystem properties," Computer Physics Communications , vol. 180, no. 12, pp. 2582-2615, 2009.
[23] X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, D. C. Allan, "A brief introduction to the ABINIT software package," Zeitschrift fur Kristallographie , vol. 220, no. 5-6, pp. 558-562, 2005.
[24] J. P. Perdew, K. Burke, M. Ernzerhof, "Generalized gradient approximation made simple," Physical Review Letters , vol. 77, no. 18, pp. 3865-3868, 1996.
[25] H. J. Monkhorst, J. D. Pack, "Special points for Brillouin-zone integrations," Physical Review B , vol. 13, no. 12, pp. 5188-5192, 1976.
[26] F. Birch, "Finite elastic strain of cubic crystals," Physical Review , vol. 71, no. 11, pp. 809-824, 1947.
[27] F. D. Murnaghan Finite Deformation of An Elastic Solid , Dover Publications, New York, NY, USA, 1951.
[28] J. Zhao, J. M. Winey, Y. M. Gupta, "First-principles calculations of second- and third-order elastic constants for single crystals of arbitrary symmetry," Physical Review B , vol. 75, no. 9, 2007.
[29] R. Hill, "The elastic behaviour of a crystalline aggregate," Proceedings of the Physical Society A , vol. 65, no. 5, pp. 349-354, 1952.
[30] D. C. Wallace Thermodynamics of Crystals , John Wiley & Sons, New York, NY, USA, 1972.
[31] D. J. Green An Introduction to the Mechanical Properties of Ceramics , Cambridge University Press, Cambridge, UK, 1998.
[32] R. E. Newnham Properties of Materials; Anisotropy, Symmetry, Structure , Oxford University Press, New York, NY, USA, 2005.
[33] D. G. Pettifor, "Theoretical predictions of structure and related properties of intermetallics," Materials Science and Technology , vol. 8, no. 4, pp. 345-349, 1992.
[34] S. Pugh, "Relations between the elastic moduli and the plastic properties of polycrystalline pure metals," Philosophical Magazine Series , vol. 7, no. 45, pp. 823-843, 1954.
[35] J. Haines, J. M. Léger, G. Bocquillon, "Synthesis and design of superhard materials," Annual Review of Materials Research , vol. 31, pp. 1-23, 2001.
[36] V. Kanchana, "Mechanical properties of Ti3 AlX (X = C, N): Ab initio study," Europhysics Letters , vol. 87, no. 2, pp. 26006, 2009.
[37] S. Mollah, "The physics of the non-oxide perovskite superconductor MgCNi3 ," Journal of Physics Condensed Matter , vol. 16, no. 43, pp. R1237-R1276, 2004.
[38] W. L. McMillan, "Transition temperature of strong-coupled superconductors," Physical Review , vol. 167, no. 2, pp. 331-344, 1968.
[39] J. H. Shim, S. K. Kwon, B. I. Min, "Electronic structures of antiperovskite superconductors MgXNi3 (X = B, C, and N)," Physical Review B , vol. 64, no. 18, 2001.
[]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2013 D. F. Shao et al. D. F. Shao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
We theoretically investigated antiperovskite chromium-based carbides ACCr3through the first-principles calculation based on density functional theory (DFT). The structure optimization shows that the lattice parameter of ACCr3is basically proportional to the radius of A-site elements. The calculated formation energies show that AlCCr3and GaCCr3can be synthesized at ambient pressure and are stable with nonmagnetic ground states. Based on the calculation of elastic constants, some elastic, mechanical, and thermal parameters are derived and discussed. AlCCr3and GaCCr3show ductile natures and may have similar thermal properties. From the analysis of the electronic structures, it was found that there are electron and hole bands that cross the Fermi level for AlCCr3and GaCCr3, indicating multiple-band natures. The Fermi level locates at the vicinity of the density of states (DOSs) peak, which leads to a large DOS at Fermi level dominated by Cr-3d electrons. The band structures of AlCCr3and GaCCr3are very similar to those of the superconducting antiperovskite MgCNi3. The similarity may make AlCCr3and GaCCr3behave superconductively, which needs to be further investigated in theoretical and experimental studies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer