Content area
Full text
Lei Hu 1, 2 and Jie Zhang 2 and Changsheng Li 2 and Yan Cui 2 and Liquan Wang 1
Recommended by Hongxing Wei
1, School of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
2, School of Mechanical Engineering and Automation, Beihang University, XueYuan Road No. 37, HaiDian District, Beijing 100191, China
Received 21 April 2013; Accepted 20 May 2013
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Chinese massage has been found to be an efficient way to ease and treat chronic pain [1]. With modernization, massage robots have been used with success in place of traditional massage techniques. Japan's Sanyo Electric Co. first utilized robotic kneading action in 1996 as an alternative for hand massage [2]. Toyohashi University of Technology proposed a four-finger massage hand with force sensor in 2006 [3-6]. Tottori University subsequently introduced a massage chair based on skin resilience in 2007 [7], and in the same year, Japan's Waseda University and Asahi University developed robots for facial massage [8], and Konkuk University applied the robot to back massage [9]. Although these studies discussed the specific aspects of each massage, the entire massage system that integrates massage skills together with the therapy process needs further study. In addition, safety considerations and individualized massage therapy solutions should be incorporated into robotic massage system, so as to make them more adaptable for clinical use.
For these reasons, we developed a robotic massage system acting on acupuncture points based on traditional Chinese massage therapy theory, with reproduced human manipulation technics based on the experience of experts [10]. The kinematic and force features of key massage technics, such as thumb kneading, pressing, rolling, vibrating, and pinching, were summarized by analyzing the massage processes of massage therapists, and a mathematical model for robotic massage was established. A pain threshold value was introduced to individualize therapy schemes, and a force-position control method based on the pain threshold was presented. VAS (Visual Analogue Scale) tests for lumbar muscle strain were carried out using the massage robot to validate the treatment effect.
The robot end-effector was contacted with subjects' soft tissue when...