It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 82
Abstract
Background: The aerobic energy metabolism of cardiac muscle cells is of major importance for the contractile function of the heart. Because energy metabolism is very heterogeneously distributed in heart tissue, especially during coronary disease, a method to quantify metabolic fluxes in small tissue samples is desirable. Taking tissue biopsies after infusion of substrates labeled with stable carbon isotopes makes this possible in animal experiments. However, the appreciable noise level in NMR spectra of extracted tissue samples makes computational estimation of metabolic fluxes challenging and a good method to define confidence regions was not yet available.
Results: Here we present a computational analysis method for nuclear magnetic resonance (NMR) measurements of tricarboxylic acid (TCA) cycle metabolites. The method was validated using measurements on extracts of single tissue biopsies taken from porcine heart in vivo . Isotopic enrichment of glutamate was measured by NMR spectroscopy in tissue samples taken at a single time point after the timed infusion of 13 C labeled substrates for the TCA cycle. The NMR intensities for glutamate were analyzed with a computational model describing carbon transitions in the TCA cycle and carbon exchange with amino acids. The model dynamics depended on five flux parameters, which were optimized to fit the NMR measurements. To determine confidence regions for the estimated fluxes, we used the Metropolis-Hastings algorithm for Markov chain Monte Carlo (MCMC) sampling to generate extensive ensembles of feasible flux combinations that describe the data within measurement precision limits. To validate our method, we compared myocardial oxygen consumption calculated from the TCA cycle flux with in vivo blood gas measurements for 38 hearts under several experimental conditions, e.g. during coronary artery narrowing.
Conclusions: Despite the appreciable NMR noise level, the oxygen consumption in the tissue samples, estimated from the NMR spectra, correlates with blood-gas oxygen uptake measurements for the whole heart. The MCMC method provides confidence regions for the estimated metabolic fluxes in single cardiac biopsies, taking the quantified measurement noise level and the nonlinear dependencies between parameters fully into account.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer