Full text

Turn on search term navigation

© 2013 Kemere et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hippocampal information processing is often described as two-state, with a place cell state during movement and a reactivation state during stillness. Relatively little is known about how the network transitions between these different patterns of activity during exploration. Here we show that hippocampal network changes quickly and continuously as animals explore and become familiar with initially novel places. We measured the relationship between moment-by-moment changes in behavior and information flow through hippocampal output area CA1 in rats. We examined local field potential (LFP) patterns, evoked potentials and ensemble spiking and found evidence suggestive of a smooth transition from strong CA3 drive of CA1 activity at low speeds to entorhinal cortical drive of CA1 activity at higher speeds. These changes occurred with changes in behavior on a timescale of less than a second, suggesting a continuous modulation of information processing in the hippocampal circuit as a function of behavioral state.

Details

Title
Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places
Author
Kemere, Caleb; Carr, Margaret F; Karlsson, Mattias P; Frank, Loren M
First page
e73114
Section
Research Article
Publication year
2013
Publication date
Sep 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1429411585
Copyright
© 2013 Kemere et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.