Full text

Turn on search term navigation

© 2013 Yonezawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The human gastric pathogen Helicobacter pylori forms biofilms in vitro and in vivo. The purpose of this study was to evaluate the effects of H. pylori biofilm formation in vitro on clarithromycin (CLR) susceptibility. CLR susceptibility of H. pylori intermediate (2-day) and mature (3-day) biofilms on glass coverslips was determined at concentrations from 0.03 to 0.5 µg/ml. H. pylori biofilm biomass was increased after treatment with CLR at minimum inhibitory concentration levels by up to 4-fold (2-day biofilm) and 16-fold (3-day biofilm). Minimum bactericidal concentrations of CLR against cells in a biofilm were higher (1.0 µg/ml) than that for planktonic cells (0.25 µg/ml). It was shown that the expression of efflux pump genes was significantly increased in biofilm cells. In addition, exposure of biofilms to CLR resulted in high level resistance generation compared to planktonic cells with increased resistance associated with the presence of a point mutation at either position 2142 or 2143 in the domain V loop of the 23S rRNA gene. These results demonstrate that H. pylori biofilm formation decreases the susceptibility to CLR and that H. pylori CLR resistance mutations are more frequently generated in biofilms than in planktonic cells.

Details

Title
Impact of Helicobacter pylori Biofilm Formation on Clarithromycin Susceptibility and Generation of Resistance Mutations
Author
Yonezawa, Hideo; Osaki, Takako; Hanawa, Tomoko; Kurata, Satoshi; Ochiai, Kuniyasu; Kamiya, Shigeru
First page
e73301
Section
Research Article
Publication year
2013
Publication date
Sep 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1430901090
Copyright
© 2013 Yonezawa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.