Full text

Turn on search term navigation

© 2013 Salpea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cardiovascular disease and diabetes have been linked to shorter telomeres, but it is not yet clear which risk factors contribute to shorter telomeres in patients. Our aim was to examine whether pro-inflammatory conditioning, in combination or not with high glucose, result in a higher rate of telomere shortening during in vitro cellular ageing. Human fibroblasts from four donors were cultured for 90 days in: 1) medium lacking ascorbic acid only, 2) 10 mM buthionine sulphoximine (BSO) (pro-oxidant), 3) 25 mM D-glucose, 4) 1 ng/ml IL1B and 5) 25 mM D-glucose+1 ng/ml IL1B. Telomere length was measured with qPCR and intracellular reactive oxygen species (ROS) content and cell death with flow cytometry. Cultures treated with high glucose and BSO displayed a significantly lower growth rate, and cultures treated with IL1B showed a trend towards a higher growth rate, compared to the control [Glucose:0.14 PD/day, p<0.001, BSO: 0.11 PD/day, p = 0.006 and IL1B: 0.19 PD/day, p = 0.093 vs. Control:0.16 PD/day]. Telomere shortening with time was significantly accelerated in cultures treated with IL1B compared to the control [IL1B:−0.8%/day (95%CI:−1.1, −0.5) vs. Control:−0.6%/day (95%CI:−0.8, −0.3), p = 0.012]. The hastening of telomere shortening by IL1B was only in part attenuated after adjustment for the number of cell divisions [IL1B:−4.1%/PD (95%CI:−5.7, −2.4) vs. Control:−2.5%/PD (95%CI:−4.4, −0.7), p = 0.067]. The intracellular ROS content displayed 69% increase (p = 0.033) in BSO compared to the control. In aging fibroblasts, pro-inflammatory conditioning aggravates the shortening of telomeres, an effect which was only in part driven by increased cell turnover. High glucose alone did not result in greater production of ROS or telomere shortening.

Details

Title
The Effect of Pro-Inflammatory Conditioning and/or High Glucose on Telomere Shortening of Aging Fibroblasts
Author
Salpea, Klelia D; Maubaret, Cecilia G; Kathagen, Annegret; Ken-Dror, Gie; Gilroy, Derek W; Humphries, Steve E
First page
e73756
Section
Research Article
Publication year
2013
Publication date
Sep 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1435432381
Copyright
© 2013 Salpea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.