Full text

Turn on search term navigation

© 2013 Rebours et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pancreatic stellate cells (PSC) are involved in fibrogenesis and oncogenesis by modulating the extracellular matrix.

Aim

To evaluate the effect of cellular stress on PSC activation using a model of normal human pancreatic tissue slices culture preserving the microenvironment.

Methods

Thin sections (300μm) of normal human pancreas were cultured under hyperoxia (90% O2) during 72 hours. Viability and morphological analysis were performed at baseline, H24, H48 and H72. Cell differentiation (insulin, trypsin, CA9 and CK7), hypoxia (HIF1-α), apoptosis (caspase-3), proliferation (Ki67), TGF-β expression and PSC activation (smooth muscle actin (SMA), nestin) were assessed using immunostaining, longitudinally. Control experiments were performed under normoxic conditions (21% O2).

Results

Thirty sections per specimen (n=10) were cultured. Hypoxia pathways were activated by the higher expression of HIF1-α at H48 and H72. Apoptosis was limited with only rare acinar cells expressing of the caspase-3 at 48 and H72 (NS). Morphological analysis showed gradual appearance of acinoductal metaplasia, proven by CK7 expression and ductal phenotype of dedifferentiated acini. Transdifferentiation of PSC was shown by de novo SMA immunochemistry at H24 and H48. Expression of Ki67 index identified significant proliferation of activated PSC (double immunostaining Ki67-SMA) at H48 and H72 (p=0.02). In vitro culture of normal human pancreas thin sections is feasible with optimized cell viability at 72 hours. This model of culture in hyperoxic conditions provides evidences that cellular stress may rapidly induce transactivation of PSC with ducto-acinar metaplasia.

Details

Title
Hypoxia Pathways and Cellular Stress Activate Pancreatic Stellate Cells: Development of an Organotypic Culture Model of Thick Slices of Normal Human Pancreas
Author
Rebours, Vinciane; Albuquerque, Miguel; Sauvanet, Alain; Ruszniewski, Philippe; Lévy, Philippe; Paradis, Valérie; Bedossa, Pierre; Couvelard, Anne
First page
e76229
Section
Research Article
Publication year
2013
Publication date
Sep 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1438035392
Copyright
© 2013 Rebours et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.