Full Text

Turn on search term navigation

© 2013 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

WUSCHEL (WUS) is essential for preventing stem cell differentiation in Arabidopsis. Here we report that in addition to its functions in meristematic stem cell maintenance, WUS is involved in the regulation of cell division. The WUS gain-of-function mutant, stem ectopic flowers (sef), displayed elongated hypocotyls, whereas the loss-of-function wus-1 mutant had shortened hypocotyls. The long hypocotyl in sef was due to the presence of more cells, rather than increased cell elongation. Microscopic observation, flow cytometry assays, quantitative RT-PCR (qRT-PCR), and histochemical staining of CycB1;1::GUS supported the hypothesis that ectopic cell division occurred in the sef hypocotyls after germination. Both immunoblot and qRT-PCR results showed that WUS was ectopically expressed in sef hypocotyls. Luciferase activity, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) showed that GLUTAMINE-RICH PROTEIN 23 (GRP23) expression can be activated by WUS and that GRP23 is a direct target gene of WUS. The phenotypes of 35S::GRP23 plants and GRP23 knockdown lines supported the notion that GRP23 mediates the effects of WUS on hypocotyl length. Together, our data suggest that ectopic expression of WUS in hypocotyl controls cell division through its target gene GRP23.

Details

Title
Ectopic Expression of WUS in Hypocotyl Promotes Cell Division via GRP23 in Arabidopsis
Author
Zhang, Dajian; Wang, Xiaomin; Wang, Min; Li, Junhua; Guo, Xiaoyu; Kang, Chong; Xu, Yunyuan
First page
e75773
Section
Research Article
Publication year
2013
Publication date
Sep 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1439115490
Copyright
© 2013 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.