Full Text

Turn on search term navigation

© 2013 Romacho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Visfatin is a multifaceted adipokine whose circulating levels are enhanced in different metabolic diseases. Extracellular visfatin can exert various deleterious effects on vascular cells, including inflammation and proliferation. Limited evidence exists, however, on the capacity of human vascular cells to synthesize and release visfatin by themselves, under basal or pro-inflammatory conditions.

Methods and Results

Intracellular visfatin was detected by Western blot in non-stimulated human umbilical vein endothelial cells (HUVEC). However, exposing HUVEC for 18 h to a series of pro-inflammatory stimulus, such as interleukin (IL)-1β (1 to 10 ng/mL), tumor necrosis factor-α (1 to 10 ng/mL) or angiotensin II (10 pmol/L to 1 μmol/L) markedly enhanced intracellular visfatin content. Using IL-1β (10 ng/mL; 18 h), it was determined that the increase in intracellular visfatin, which was paralleled by enhanced visfatin mRNA levels, relied on a signalling mechanism involving both nuclear factor-κB and poly (ADP ribose) polymerase-1 activation. Moreover, IL-1β modified the sub-cellular localization of visfatin; while in non-stimulated HUVEC immunoreactive visfatin predominantly showed an intra-nuclear granular pattern, in IL-1β-inflamed cells an extra-nuclear filamentous staining, co-localising with F-actin fibers and suggesting a secretory pattern, was mainly found. Indeed, IL-1β promoted visfatin secretion, as determined by both ELISA and immunocytochemistry.

Conclusions

Human endothelial cells synthesize and release visfatin, particularly in response to inflammation. We suggest that the inflamed endothelium can be a source of visfatin, which arises as a local inflammatory mediator and a potential therapeutic target to interfere with vascular inflammation.

Details

Title
Visfatin as a Novel Mediator Released by Inflamed Human Endothelial Cells
Author
Romacho, Tania; Villalobos, Laura A; Cercas, Elena; Carraro, Raffaele; Sánchez-Ferrer, Carlos F; Peiró, Concepción
First page
e78283
Section
Research Article
Publication year
2013
Publication date
Oct 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1441280944
Copyright
© 2013 Romacho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.