It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Decision making is considered as one of the most difficult tasks in restaurants as food items are perishable. Managers always want to analyze summaries of sales, to get aware of customer preferences, to figure out which items or combinations of items should be put on sale or to simply acquire various kinds of marketing information. To fulfill this need, this paper is aimed to provide customer's buying patterns of food items using data mining techniques. Analysis of sales data shows that some food items are sold frequently while some food products are sold rarely. This paper proposes a method that groups the food items as slow selling, medium-selling and fast selling items using KMedoids clustering algorithm. These clusters intern are given as input for the association rule mining based Apriori and Most Frequent Pattern Mining algorithm to generate frequent patterns. The proposed method helps restaurant manager in decision making.The frequent patterns generated may assist restaurant manager to formulate marketing strategies and maximize profit.The algorithm is evaluated by using standard data set and is compared with the results of other algorithms considering computational time and other parameters as quality measures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer