Abstract

Doc number: S6

Abstract

Background: Data preprocessing is a major step in data mining. In data preprocessing, several known techniques can be applied, or new ones developed, to improve data quality such that the mining results become more accurate and intelligible. Bioinformatics is one area with a high demand for generation of comprehensive models from large datasets. In this article, we propose a context-based data preprocessing approach to mine data from molecular docking simulation results. The test cases used a fully-flexible receptor (FFR) model of Mycobacterium tuberculosis InhA enzyme (FFR_InhA) and four different ligands.

Results: We generated an initial set of attributes as well as their respective instances. To improve this initial set, we applied two selection strategies. The first was based on our context-based approach while the second used the CFS (Correlation-based Feature Selection) machine learning algorithm. Additionally, we produced an extra dataset containing features selected by combining our context strategy and the CFS algorithm. To demonstrate the effectiveness of the proposed method, we evaluated its performance based on various predictive (RMSE, MAE, Correlation, and Nodes) and context (Precision, Recall and FScore) measures.

Conclusions: Statistical analysis of the results shows that the proposed context-based data preprocessing approach significantly improves predictive and context measures and outperforms the CFS algorithm. Context-based data preprocessing improves mining results by producing superior interpretable models, which makes it well-suited for practical applications in molecular docking simulations using FFR models.

Details

Title
Context-based preprocessing of molecular docking data
Author
Winck, Ana T; Machado, Karina S; de Souza, Osmar Norberto; Ruiz, Duncan D
Publication year
2013
Publication date
2013
Publisher
BioMed Central
e-ISSN
14712164
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1445210083
Copyright
© 2013 Winck et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.