[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
Greenland ice sheet mass losses have increased in recent decades with more than half of these attributed to surface meltwater runoff. However, the magnitudes of englacial storage, firn retention, internal refreezing and other hydrologic processes that delay or reduce true water export to the global ocean remain less understood, partly due to a scarcity of in situ measurements. Here, ice sheet surface meltwater runoff and proglacial river discharge between 2008 and 2010 near Kangerlussuaq, southwestern Greenland were used to establish sub- and englacial meltwater storage for a small ice sheet watershed (36-64 km2 ). This watershed lacks significant potential meltwater storage in firn, surface lakes on the ice sheet and in the proglacial area, and receives limited proglacial precipitation. Thus, ice sheet surface runoff not accounted for by river discharge can reasonably be attributed to retention in sub- and englacial storage. Evidence for meltwater storage within the ice sheet includes (1) characteristic dampened daily river discharge amplitudes relative to ice sheet runoff; (2) three cold-season river discharge anomalies at times with limited ice sheet surface melt, demonstrating that meltwater may be retained up to 1-6 months; (3) annual ice sheet watershed runoff is not balanced by river discharge, and while near water budget closure is possible as much as 54% of melting season ice sheet runoff may not escape to downstream rivers; (4) even the large meltwater retention estimate (54%) is equivalent to less than 1% of the ice sheet volume, which suggests that storage in en- and subglacial cavities and till is plausible. While this study is the first to provide evidence for meltwater retention and delayed release within the Greenland ice sheet, more information is needed to establish how widespread this is along the Greenland ice sheet perimeter.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer