Full text

Turn on search term navigation

© 2013 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Previous statistical analyses have shown that amino acid sites in a protein evolve in a correlated way instead of independently. Even though located distantly in the linear sequence, the coevolved amino acids could be spatially adjacent in the tertiary structure, and constitute specific protein sectors. Moreover, these protein sectors are independent of one another in structure, function, and even evolution. Thus, systematic studies on protein sectors inside a protein will contribute to the clarification of protein function. In this paper, we propose a new algorithm BIFANR (Bi-factor Analysis Based on Noise-reduction) for detecting protein sectors in amino acid sequences. After applying BIFANR on S1A family and PDZ family, we carried out internal correlation test, statistical independence test, evolutionary rate analysis, evolutionary independence analysis, and function analysis to assess the prediction. The results showed that the amino acids in certain predicted protein sector are closely correlated in structure, function, and evolution, while protein sectors are nearly statistically independent. The results also indicated that the protein sectors have distinct evolutionary directions. In addition, compared with other algorithms, BIFANR has higher accuracy and robustness under the influence of noise sites.

Details

Title
Bi-Factor Analysis Based on Noise-Reduction (BIFANR): A New Algorithm for Detecting Coevolving Amino Acid Sites in Proteins
Author
Liu, Juntao; Duan, Xiaoyun; Sun, Jianyang; Yin, Yanbin; Li, Guojun; Wang, Lushan; Liu, Bingqiang
First page
e79764
Section
Research Article
Publication year
2013
Publication date
Nov 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1460161397
Copyright
© 2013 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.