Full Text

Turn on search term navigation

© 2013 Köstler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Signal-induced transcript isoform variation (TIV) includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF). We show that EGF rapidly – within one hour – induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.

Details

Title
Epidermal Growth-Factor – Induced Transcript Isoform Variation Drives Mammary Cell Migration
Author
Köstler, Wolfgang J; Zeisel, Amit; Körner, Cindy; Tsai, Jonathan M; Jacob-Hirsch, Jasmine; Ben-Chetrit, Nir; Sharma, Kirti; Cohen-Dvashi, Hadas; Assif Yitzhaky; Lader, Eric; Tschulena, Ulrich; Rechavi, Gideon; Domany, Eytan; Wiemann, Stefan; Yarden, Yosef
First page
e80566
Section
Research Article
Publication year
2013
Publication date
Dec 2013
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1465554102
Copyright
© 2013 Köstler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.