It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequent paralytic disease in adults. Most ALS cases are considered sporadic with no clear genetic component. The disruption of protein homeostasis due to chronic stress responses at the endoplasmic reticulum (ER) and the accumulation of abnormal protein inclusions are extensively described in ALS mouse models and patient-derived tissue. Recent studies using pharmacological and genetic manipulation of the unfolded protein response (UPR), an adaptive reaction against ER stress, have demonstrated a complex involvement of the pathway in experimental models of ALS. In addition, quantitative changes in ER stress-responsive chaperones in body fluids have been proposed as possible biomarkers to monitor the disease progression. Here we review most recent advances attributing a causal role of ER stress in ALS.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





