[A & I plus PDF only]
COPYRIGHT: © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2013
Abstract
We study the carbon monoxide (CO) variability in the last decade measured by NASA's Atmospheric InfraRed Sounder (AIRS) on the Earth Observing System (EOS)/Aqua satellite. The focus of this study is to analyze CO variability and short-term trends separately for background CO and fresh CO emissions based on a new statistical approach. The AIRS Level 2 (L2) retrieval algorithm utilizes cloud clearing to treat cloud contaminations in the signals, and this increases the data coverage significantly to a yield of more than 50% of the total measurements. We first study if the cloud clearing affects CO retrievals and the subsequent trend studies by using the collocated Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask to identify AIRS clear sky scenes. We then carry out a science analysis using AIRS CO data individually for the clear and cloud-cleared scenes to identify any potential effects due to cloud clearing. We also introduce a new technique to separate background and recently emitted CO observations, which aims to constrain emissions using only satellite CO data. We validate the CO variability of the recent emissions estimated from AIRS against other emission inventory databases (i.e., Global Fire Emissions Database - GFED3 and the MACC/CityZEN UE - MACCity) and calculate that the correlation coefficients between the AIRS CO recently emitted and the emission inventory databases are 0.726 for the Northern Hemisphere (NH) and 0.915 for the Southern Hemisphere (SH). The high degree of agreement between emissions identified using only AIRS CO and independent inventory sources demonstrates the validity of this approach to separate recent emissions from the background CO using one satellite data set.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer