It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Doc number: 7
Abstract
Background: Extravillous trophoblast (EVT) cells are of pivotal importance in human embryo implantation and homeostasis of the maternal fetal interface. Invasion of the endometrium by EVT contributes to placental anchorage, spiral artery remodeling, immunological defense, tolerogenic responses, and several collaborative cross talks involved in establishing and maintaining a successful pregnancy. We report here an improved protocol for the isolation of fully differentiated EVT cells from the basal plate of the human term placenta.
Methods: The basal plate was carefully dissected from the villous tissue and the amniochorion membrane prior to enzymatic digestion. Term basal EVT cells were isolated using a 30 and 60% Percoll gradient. A panel of markers and characteristics of the isolated cells were used to confirm the specificity and efficiency of the method so that their potential as an investigative tool for placental research could be ascertained.
Results: Isolated cells were immunoreactive for cytokeratin-7 (CK-7), placental growth factor, placental alkaline phosphatase, human leukocyte antigen G1 (HLA-G1), and α1 and α5 integrins, similarly to the EVT markers from first trimester placental villi. Around 95% of the isolated cells labeled positively for CK-7 and 82% for HLA-G1. No significant change in viability was observed during 48 h of EVT culture as indicated by propidium iodide incorporation and trypan blue test exclusion. Genes for metalloproteinases MMP-2 and MMP9 (positive regulators of trophoblast invasiveness) were expressed up to 48 h of culturing, as also the gelatinolytic activity of the isolated cells. Transforming growth factor (TGF)-beta, which inhibits proliferation, migration, and invasiveness of first-trimester EVT cells, also reduced invasion of isolated term EVT cells in transwell assays, whereas epidermal growth factor was a positive modulator.
Conclusions: Term basal plate may be a viable source of functional EVT cells that is an alternative to villous explant-derived EVT cells and cell lines. Isolated term EVT cells may be particularly useful in investigation of the role of trophoblast cells in pathological gestations, in which the precise regulation and interactive ability of extravillous trophoblast has been impaired.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer