[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
As precursors to tropospheric ozone and nitrate, nitrogen oxide (NOx ) in the present atmosphere and its transformation in response to emission and climate perturbations are studied by using the CAM-Chem model and air quality measurements from the National Emissions Inventory (NEI), Clean Air Status and Trends Network (CASTNET), and Environmental Protection Agency Air Quality System (EPA AQS). It is found that NOx transformations in present atmospheric conditions show different sensitivities over industrial and non-industrial regions. As a result, the surface ozone and nitrate formations can be divided into several regimes associated with the dominant emission types and relative levels of NOx and volatile organic compounds (VOC). Ozone production in industrial regions (the main NOx emission source areas) increases in warmer conditions and slightly decreases following an increase in NOx emissions due to NOx titration, which is opposite to the response in non-industrial regions. The ozone decrease following a temperature increase in non-industrial regions indicates that ozone production in regions that lack NOx emission sources may be sensitive to NOx transformation in remote source regions. The increase in NO2 from NOx titration over industrial regions results in an increase rate of total nitrate that remains higher than the increase rate of NOx emissions. The presented findings indicate that a change in the ozone concentration is more directly affected by changes in climate and precursor emissions, while a change in the nitrate concentration is affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that a warmer climate accelerates the decomposition of odd nitrogen (NOy ) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations of the historical emissions and air quality records of a typical NOx -limited area, such as Atlanta and a VOC-limited area, such as Los Angeles further confirm the conclusions drawn from the modeling experiments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer