Full text

Turn on search term navigation

Copyright Copernicus GmbH 2014

Abstract

Each atmospheric aerosol type has distinctive light-absorption characteristics related to its physical/chemical properties. Climate models treat black carbon as the main light-absorbing component of carbonaceous atmospheric aerosols, while absorption by some organic aerosols is also considered, particularly at ultraviolet wavelengths. Most absorbing aerosols are assumed to be < 1 μm in diameter (sub-micron). Here we present results from a recent field study in India, primarily during the post-monsoon season (October-November), suggesting the presence of absorbing aerosols sized 1-10 μm. Absorption due to super-micron-sized particles was nearly 30% greater than that due to smaller particles. Periods of increased absorption by larger particles ranged from a week to a month. Radiative forcing calculations under clear-sky conditions show that super-micron particles account for nearly 44% of the total aerosol forcing. The origin of the large aerosols is unknown, but meteorological conditions indicate that they are of local origin. Such economic and habitation conditions exist throughout much of the developing world. Hence, large absorbing particles could be an important component of the regional-scale atmospheric energy balance.

Details

Title
Increased absorption by coarse aerosol particles over the Gangetic-Himalayan region
Author
Manoharan, V. S.; Kotamarthi, R.; Feng, Y.; Cadeddu, M. P.
First page
1159
Publication year
2014
Publication date
2014
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1495920899
Copyright
Copyright Copernicus GmbH 2014