[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
Global terrestrial atmosphere-ecosystem carbon dioxide fluxes are well constrained by the concentration and isotopic composition of atmospheric carbon dioxide. In contrast, considerable uncertainty persists surrounding regional contributions to the net global flux as well as the impacts of atmospheric and biological processes that drive the net flux. These uncertainties severely limit our ability to make confident predictions of future terrestrial biological carbon fluxes. Here we use a simple light-use efficiency land surface model (the Vegetation Photosynthesis Respiration Model, VPRM) driven by remotely sensed temperature, moisture, and phenology to diagnose North American gross ecosystem exchange (GEE), ecosystem respiration, and net ecosystem exchange (NEE) for the period 2001 to 2006. We optimize VPRM parameters to eddy covariance (EC) NEE observations from 65 North American FluxNet sites. We use a separate set of 27 cross-validation FluxNet sites to evaluate a range of spatial and temporal resolutions for parameter estimation. With these results we demonstrate that different spatial and temporal groupings of EC sites for parameter estimation achieve similar sum of squared residuals values through radically different spatial patterns of NEE. We also derive a regression model to estimate observed VPRM errors as a function of VPRM NEE, temperature, and precipitation. Because this estimate is based on model-observation residuals it is comprehensive of all the error sources present in modeled fluxes. We find that 1 km interannual variability in VPRM NEE is of similar magnitude to estimated 1 km VPRM NEE errors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer