Full text

Turn on search term navigation

© 2014 Avarguès-Weber, Chittka. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Bumblebees use information provided inadvertently by conspecifics when deciding between different flower foraging options. Such social learning might be explained by relatively simple associative learning mechanism: the bee may learn to associate conspecifics with nectar or pollen reward through previous experience of foraging jointly. However, in some studies, observers were guided by choices of ‘demonstrators’ viewed through a screen, so no reward was given to the observers at the time of seeing other bees’ flowers choice and no demonstrator bee was present at the moment of decision. This behaviour, referred to observational conditioning, implies an additional associative step as the positive value of conspecific is transferred to the associated flower. Here we explore the role of demonstrator movement, and the distance between observers and demonstrators that is required for observation conditioning to take place.

Methodology/Principal Findings

We identify the conditions under which observational conditioning occurs in the widespread European species Bombus terrestris. The presence of artificial demonstrator bees leads to a significant change in individual colour preference toward the indicated colour if demonstrators were moving and observation distance was limited (15 cm), suggesting that observational conditioning could only influence relatively short-range foraging decisions. In addition, the movement of demonstrators is a crucial factor for observational conditioning, either due to the more life-like appearance of moving artificial bees or an enhanced detectability of moving demonstrators, and an increased efficiency at directing attention to the indicated flower colour.

Conclusion

Bumblebees possess the capacity to learn the quality of a flower by distal observation of other foragers’ choices. This confirms that social learning in bees involves more advanced processes than simple associative learning, and indicates that observational conditioning might be widespread in pollinating insects, raising intriguing questions for the underlying mechanisms as well as the spread of social information in pollinator-plant interactions.

Details

Title
Observational Conditioning in Flower Choice Copying by Bumblebees (Bombus terrestris): Influence of Observer Distance and Demonstrator Movement
Author
Avarguès-Weber, Aurore; Chittka, Lars
First page
e88415
Section
Research Article
Publication year
2014
Publication date
Feb 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1496070720
Copyright
© 2014 Avarguès-Weber, Chittka. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.