It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ultrastructural studies conducted in situ using conventional transmission electron microscopy have had relatively little impact on defining the structural organization of chromatin. This is due to the fact that in routine transmission electron microscopy, together with the deoxyribonucleoprotein, many different intermingled substances are contrasted, masking the ultrastructure of chromatin. By selective staining of DNA in thin sections, using the Feulgen-like osmium-ammine reaction, these drawbacks have been overcome and worthwhile data have been obtained both on the gross morphology and the ultrastructural-functional organization of chromatin in situ. In the present study these results are reviewed and discussed in light of recent achievements in both interphase nuclear chromatin compartmentalization in interphase nuclei and in the structural organization of chromatin fibers in transcriptionally active and inactive chromatin.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer