[A & I plus PDF only]
COPYRIGHT: © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 License.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Copernicus GmbH 2014
Abstract
Supraglacial lakes represent an ephemeral storage buffer for meltwater runoff and lead to significant, yet short-lived, episodes of ice-flow acceleration by decanting large meltwater and energy fluxes into the ice sheet's hydrological system. Here, a methodology for calculating lake volume is used to quantify storage and drainage across Russell Glacier, West Greenland, between 2002 and 2012. Using 502 MODIS scenes, water volume at ~200 seasonally occurring lakes was derived using a depth-reflectance relationship, which was independently calibrated and field validated against lake bathymetry. The inland expansion of lakes is strongly correlated with air temperature: during the record melt years of 2010 and 2012, lakes formed and drained earlier, attaining their maximum volume 38 and 20 days earlier than the 11 yr mean, as well as occupying a greater area and forming at higher elevations (> 1800 m) than previously. Despite occupying under 2% of the study area, lakes delay the transmission of up to 7-13% of the bulk meltwater discharged. Although the results are subject to an observational bias caused by periods of cloud cover, we estimate that across Russell Glacier, 28% of supraglacial lakes drain rapidly (< 4 days). Clustering of such events in space and time suggests a synoptic trigger mechanism. Further, we find no evidence to support a unifying critical size or depth-dependent drainage threshold.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer