Full Text

Turn on search term navigation

© 2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Attention deficit is an early and key characteristic of minimal hepatic encephalopathy (MHE) and has been used as indicator for MHE detection. The aim of this study is to classify the cirrhotic patients with or without MHE (NMHE) and healthy controls (HC) using the resting-state attention-related brain network analysis.

Methods and Findings

Resting-state fMRI was administrated to 20 MHE patients, 21 NMHE patients, and 17 HCs. Three attention-related networks, including dorsal attention network (DAN), ventral attention network (VAN), and default mode network (DMN), were obtained by independent component analysis. One-way analysis of covariance was performed to determine the regions of interest (ROIs) showing significant functional connectivity (FC) change. With FC strength of ROIs as indicators, Linear Discriminant Analysis (LDA) was conducted to differentiate MHE from HC or NMHE. Across three groups, significant FC differences were found within DAN (left superior/inferior parietal lobule and right inferior parietal lobule), VAN (right superior parietal lobule), and DMN (bilateral posterior cingulate gyrus and precuneus, and left inferior parietal lobule). With FC strength of ROIs from three networks as indicators, LDA yielded 94.6% classification accuracy between MHE and HC (100% sensitivity and 88.2% specificity) and 85.4% classification accuracy between MHE and NMHE (90.0% sensitivity and 81.0% specificity).

Conclusions

Our results suggest that the resting-state attention-related brain network analysis can be useful in classification of subjects with MHE, NMHE, and HC and may provide a new insight into MHE detection.

Details

Title
Classification of Cirrhotic Patients with or without Minimal Hepatic Encephalopathy and Healthy Subjects Using Resting-State Attention-Related Network Analysis
Author
Hua-Jun, Chen; Wang, Yu; Xi-Qi, Zhu; Pei-Cheng, Li; Gao-Jun, Teng
First page
e89684
Section
Research Article
Publication year
2014
Publication date
Mar 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1508765918
Copyright
© 2014 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.