Full Text

Turn on search term navigation

© 2014 Kadri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Population structure is known to cause false-positive detection in association studies. We compared the power, precision, and type-I error rates of various association models in analyses of a simulated dataset with structure at the population (admixture from two populations; P) and family (K) levels. We also compared type-I error rates among models in analyses of publicly available human and dog datasets. The models corrected for none, one, or both structure levels. Correction for K was performed with linear mixed models incorporating familial relationships estimated from pedigrees or genetic markers. Linear models that ignored K were also tested. Correction for P was performed using principal component or structured association analysis. In analyses of simulated and real data, linear mixed models that corrected for K were able to control for type-I error, regardless of whether they also corrected for P. In contrast, correction for P alone in linear models was insufficient. The power and precision of linear mixed models with and without correction for P were similar. Furthermore, power, precision, and type-I error rate were comparable in linear mixed models incorporating pedigree and genomic relationships. In summary, in association studies using samples with both P and K, ancestries estimated using principal components or structured assignment were not sufficient to correct type-I errors. In such cases type-I errors may be controlled by use of linear mixed models with relationships derived from either pedigree or from genetic markers.

Details

Title
Comparison of Genome-Wide Association Methods in Analyses of Admixed Populations with Complex Familial Relationships
Author
Kadri, Naveen K; Guldbrandtsen, Bernt; Sørensen, Peter; Sahana, Goutam
First page
e88926
Section
Research Article
Publication year
2014
Publication date
Mar 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1509663331
Copyright
© 2014 Kadri et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.