Abstract

Doc number: 75

Abstract

Background: CA_C2195 from Clostridium acetobutylicum is a protein of unknown function. Sequence analysis predicted that part of the protein contained a metallopeptidase-related domain. There are over 200 homologs of similar size in large sequence databases such as UniProt, with pairwise sequence identities in the range of ~40-60%. CA_C2195 was chosen for crystal structure determination for structure-based function annotation of novel protein sequence space.

Results: The structure confirmed that CA_C2195 contained an N-terminal metallopeptidase-like domain. The structure revealed two extra domains: an α+β domain inserted in the metallopeptidase-like domain and a C-terminal circularly permuted winged-helix-turn-helix domain.

Conclusions: Based on our sequence and structural analyses using the crystal structure of CA_C2195 we provide a view into the possible functions of the protein. From contextual information from gene-neighborhood analysis, we propose that rather than being a peptidase, CA_C2195 and its homologs might play a role in biosynthesis of a modified cell-surface carbohydrate in conjunction with several sugar-modification enzymes. These results provide the groundwork for the experimental verification of the function.

Details

Title
Structure and computational analysis of a novel protein with metallopeptidase-like and circularly permuted winged-helix-turn-helix domains reveals a possible role in modified polysaccharide biosynthesis
Author
Das, Debanu; Murzin, Alexey G; Rawlings, Neil D; Finn, Robert D; Coggill, Penelope; Bateman, Alex; Godzik, Adam; Aravind, L
Pages
75
Publication year
2014
Publication date
2014
Publisher
BioMed Central
e-ISSN
14712105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1517984468
Copyright
© 2014 Das et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.