Full text

Turn on search term navigation

Copyright Nature Publishing Group Apr 2014

Abstract

The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B's southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B's stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones.

Details

Title
Marine ice regulates the future stability of a large Antarctic ice shelf
Author
Kulessa, Bernd; Jansen, Daniela; Luckman, Adrian J; King, Edward C; Sammonds, Peter R
Pages
3707
Publication year
2014
Publication date
Apr 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1518090712
Copyright
Copyright Nature Publishing Group Apr 2014