Full Text

Turn on search term navigation

© 2014 Uriarte-Arcia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pattern recognition and classification are two of the key topics in computer science. In this paper a novel method for the task of pattern classification is presented. The proposed method combines a hybrid associative classifier (Clasificador Híbrido Asociativo con Traslación, CHAT, in Spanish), a coding technique for output patterns called one-hot vector and majority voting during the classification step. The method is termed as CHAT One-Hot Majority (CHAT-OHM). The performance of the method is validated by comparing the accuracy of CHAT-OHM with other well-known classification algorithms. During the experimental phase, the classifier was applied to four datasets related to the medical field. The results also show that the proposed method outperforms the original CHAT classification accuracy.

Details

Title
One-Hot Vector Hybrid Associative Classifier for Medical Data Classification
Author
Uriarte-Arcia, Abril Valeria; López-Yáñez, Itzamá; Yáñez-Márquez, Cornelio
First page
e95715
Section
Research Article
Publication year
2014
Publication date
Apr 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1518097098
Copyright
© 2014 Uriarte-Arcia et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.