Full Text

Turn on search term navigation

Copyright Nature Publishing Group Apr 2014

Abstract

Glasses are amorphous solids whose constituent particles are caged by their neighbours and thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing multiple minima (basins) separated by high barriers. Here we show, using theory and numerical simulation, that the landscape is much rougher than is classically assumed. Deep in the glass, it undergoes a 'roughness transition' to fractal basins, which brings about isostaticity and marginal stability on approaching jamming. Critical exponents for the basin width, the weak force distribution and the spatial spread of quasi-contacts near jamming can be analytically determined. Their value is found to be compatible with numerical observations. This advance incorporates the jamming transition of granular materials into the framework of glass theory. Because temperature and pressure control what features of the landscape are experienced, glass mechanics and transport are expected to reflect the features of the topology we discuss here.

Details

Title
Fractal free energy landscapes in structural glasses
Author
Charbonneau, Patrick; Kurchan, Jorge; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco
Pages
3725
Publication year
2014
Publication date
Apr 2014
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1518671003
Copyright
Copyright Nature Publishing Group Apr 2014