Full Text

Turn on search term navigation

© 2014 van Engelen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Atherosclerotic plaque composition can indicate plaque vulnerability. We segment atherosclerotic plaque components from the carotid artery on a combination of in vivo MRI and CT-angiography (CTA) data using supervised voxelwise classification. In contrast to previous studies the ground truth for training is directly obtained from 3D registration with histology for fibrous and lipid-rich necrotic tissue, and with CT for calcification. This registration does, however, not provide accurate voxelwise correspondence. We therefore evaluate three approaches that incorporate uncertainty in the ground truth used for training: I) soft labels are created by Gaussian blurring of the original binary histology segmentations to reduce weights at the boundaries between components, and are weighted by the estimated registration accuracy of the histology and in vivo imaging data (measured by overlap), II) samples are weighted by the local contour distance of the lumen and outer wall between histology and in vivo data, and III) 10% of each class is rejected by Gaussian outlier rejection. Classification was evaluated on the relative volumes (% of tissue type in the vessel wall) for calcified, fibrous and lipid-rich necrotic tissue, using linear discriminant (LDC) and support vector machine (SVM) classification. In addition, the combination of MRI and CTA data was compared to using only one imaging modality. Best results were obtained by LDC and outlier rejection: the volume error per vessel was 0.91.0% for calcification, 12.77.6% for fibrous and 12.18.1% for necrotic tissue, with Spearman rank correlation coefficients of 0.91 (calcification), 0.80 (fibrous) and 0.81 (necrotic). While segmentation using only MRI features yielded low accuracy for calcification, and segmentation using only CTA features yielded low accuracy for necrotic tissue, the combination of features from MRI and CTA gave good results for all studied components.

Details

Title
Atherosclerotic Plaque Component Segmentation in Combined Carotid MRI and CTA Data Incorporating Class Label Uncertainty
Author
Arna van Engelen; Niessen, Wiro J; Klein, Stefan; Groen, Harald C; Verhagen, Hence J M; Wentzel, Jolanda J; Aad van der Lugt; de Bruijne, Marleen
First page
e94840
Section
Research Article
Publication year
2014
Publication date
Apr 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1518862477
Copyright
© 2014 van Engelen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.