Full text

Turn on search term navigation

© 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Structural information related to protein–peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein–peptide interactions explored by experimental ways. Protein–peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein–peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein–peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.

Details

Title
PaFlexPepDock: Parallel Ab-Initio Docking of Peptides onto Their Receptors with Full Flexibility Based on Rosetta
Author
Li, Haiou; Lu, Liyao; Chen, Rong; Quan, Lijun; Xia, Xiaoyan; Lü, Qiang
First page
e94769
Section
Research Article
Publication year
2014
Publication date
May 2014
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1521422792
Copyright
© 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.