Full Text

Turn on search term navigation

Copyright Copernicus GmbH 2014

Abstract

A frequently cited atmospheric CO2 threshold for the onset of Antarctic glaciation of ~780 ppmv is based on the study of DeConto and Pollard (2003) using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO2 concentrations passed through this threshold across the Eocene-Oligocene transition ~34 Ma. However, atmospheric CO2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from 7 different climate models with Eocene boundary conditions (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS_ER). These climate simulations are sourced from a number of independent studies, and as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter.

Details

Title
Uncertainties in the modelled CO2 threshold for Antarctic glaciation
Author
Gasson, E.; Lunt, D. J.; DeConto, R.; Goldner, A.; Heinemann, M.; Huber, M.; LeGrande, A. N.; Pollard, D.; Sagoo, N.; Siddall, M.; Winguth, A.; Valdes, P. J.
First page
451
Publication year
2014
Publication date
2014
Publisher
Copernicus GmbH
ISSN
18149324
e-ISSN
18149332
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1524896418
Copyright
Copyright Copernicus GmbH 2014