It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
When compared with biological samples in other matrices (plasma, urine, etc.) that are typically seen in bioanalytical applications, whole blood samples present unique challenges in method development, because of the viscous nature of blood and complexity of its constituents. In this article, we have developed and validated a series of quantitative bioanalytical methods for the determination of a pharmaceutical compound, Compound A, and its phosphate metabolite from whole blood matrices using liquid chromatography tandem mass spectrometry. All methods employed a simple protein precipitation procedure that was automated in 96-well format. The methods were subjected to vigorous tests in precision, accuracy, matrix effect, reproducibility, and robustness. Monolithic chromatography was used to improve sample throughput in one of the methods. The results also demonstrated that proper sample preparation procedures, such as sample transfer and lysing of blood cells prior to the extraction, are key to reproducible results for pharmacokinetic parameter determination.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer