It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Amyloid diseases such as Alzheimer's and thrombosis are characterized by an aberrant assembly of specific proteins or protein fragments into fibrils and plaques that are deposited in various tissues and organs. The single-domain fragment of a camelid antibody was reported to be able to combat against wild-type human lysozyme for inhibiting in-vitro aggregations of the amyloidogenic variant (D67H). The present study is aimed at elucidating the unbinding mechanics between the D67H lysozyme and VHH HL6 antibody fragment by using steered molecular dynamics (SMD) simulations on a nanosecond scale with different pulling velocities. The results of the simulation indicated that stretching forces of more than two nano Newton (nN) were required to dissociate the protein-antibody system, and the hydrogen bond dissociation pathways were computed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer